Asagi git

Kullanıcı Tag Listesi

1 den 1e kadar. Toplam 1 Sayfa bulundu
  1. #1

    • Offline
    • Lap Yaxsı Yazır
    • Array

    Üyelik tarihi
    30.07.08
    Mesajlar
    10.864

    Seviye: 55 
    Tecrübe: 22.710.475
    Sonraki Seviye: 26.073.450

    Konular
    3298
    Teşekkürler
    0
    352 Mesajına 484 Tşk. Aldı
    Bahsedildi
    0 Mesaj
    Etiketlenmiş
    1 Konu
    Tecrübe Puanı
    511
    Yazı Boyutu

    Standart Fraktal -Fraktal nedir-Fraktal nerelerde kullanılır



    Fraktal

    Fraktal nedir

    Fraktal nerelerde kullanılır

    Fraktal parçalanmış ya da kırılmış anlamına gelen Lâtince fractuuss kelimesinden gelmiştir. İlk olarak 1975'de Polonya asıllı matematikçi Benoit Mandelbrot tarafından ortaya atıldığı varsayılır. Kendi kendini tekrar eden ama sonsuza kadar küçülen şekilleri kendine benzer bir cisimde cismi oluşturan parçalar ya da bileşenler cismin bütününü inceler. Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde yinelenir ve tümüyle soyut nesnelerde sonsuza kadar sürebilir; tam tersi de her parçanın her bir parçası büyütüldüğünde gene cismin bütününe benzemesi olayıdır. Doğada görülebilen bir örnek olarak bazı bitkilerin yapısı verilebilir

    Teorinin gelişimi

    Benoit Mandelbrot IBM laboratuvarlarında çalışmaya başladığında Oyun kuramı iktisat emtia fiyatları gibi çeşitli alanlarda çalışan bir mühendisti. Bu çalışmalarını tamamladığında veri iletim hatlarındaki gürültü üzerinde çalışmaya başladı. Mühendisler veri aktarımı sırasında oluşan gürültü karşısında çaresiz kalmışlardı. Mühendislerin bu soruna bulabildikleri en iyi çare sinyal gücünü arttırmaktan ileri gidememişti; ama sinyal gücünün arttırılması da tam bir çözüm sağlamamıştı. İletişim sırasında gürültüye bağlı hatalar oluşmaktaydı.


    İletim hatlarındaki gürültü doğası gereği gelişigüzel olmasına rağmen kümeler halinde gelmekteydi. İletişim süresi boyunca hatasız periyotlar arasında hatalı periyotlar yer almaktaydı. Hatalı periyotların incelenmesi hata paterninin sanıldığından daha karmaşık olduğunu ortaya koymuştur. Mandelbrot bir günlük veri trafiğini birer saatlik periyotlara ayırdı. Daha sonra hatanın gözlendiği periyotları ele alıp bu periyotlar yirmişer dakikalık parçalara böldü ve yine gördü ki bu birer saatlik periyotların içinde de yine hatasız bölümler bulunmaktaydı. Mandelbrot hatalı bölümleri daha kısa zaman aralıklarına bölmeye devam etti ve sonunda hatasız periyotların var olduğunu gösterdi. Bu arada aykırı bir durum Mandelbrot'un dikkatini çekti fakat: hatalı periyotların hatasız periyotlara oranı periyodun uzunluğundan bağımsız olarak neredeyse sabit kalıyordu.



    Yukarıdaki tanıma uyan dağılım fonksiyonuna sahip bir dizi 19. yüzyılda yaşamış olan bir matematikçi olan Georg Cantor'un anısına Cantor dizisi olarak bilinir. Cantor dizisini oluşturmak için L uzunluğunda bir doğru parçası alınır. Doğru parçasının ortadaki üçte birlik kısmı silinir. Artık L/3 uzunluğunda 2 adet doğru parçası vardır. Bu doğru parçalarının da ortadaki üçte birlik kısımları çıkarılır ve bu işlem sonsuza kadar tekrarlanırsa elde edilen yapının adı Cantor Tozudur. Bu tozun koordinatları bir Cantor dizisi oluşturur. Cantor Tozu sonsuz adet noktadan oluşur; ama toplam uzunluğu sıfırdır.

    Mandelbrot yukarıdaki gürültü dağılımını kullanarak sinyal gücünün arttırılmasının gürültüye bağlı hatalardan kaçınılamayacağını göstermiştir.

    Yapılması gereken hataları engellemek değil hataları düzeltecek bir mekanizma geliştirmektir.
    Mandelbrot'nun kendi kendine sorduğu şu soru daha sonraki çalışmalarını yönlendiren temel işlev olmuştur: "İngiltere kıyılarının uzunluğu nedir?" "Bu sorunun yanıtı kullanmakta olduğunuz ölçüm aracının uzunluğuna bağlıdır." diyordu Mandelbrot. Mesela bir metrelik bir pergelin kıyı boyunca yürütüldüğünü düşünün. Bulacağınız uzunluk yaklaşık bir değer olacaktır. Zira pergel uzunluğu bir metreden daha kısa olan girinti ve çıkıntıları atlayacaktır. Pergeli yarım metreye indirdiğinizde bulacağınız sonuç bir öncekinden daha büyük daha doğru ama halen yaklaşık sonuç olacaktır. Bu sefer de pergel yarım metreden daha kısa olan girinti çıkıntıları ölçemeyecektir. Pergeli daha da küçülttüğünüzde elde edeceğiniz sonuç daha büyük ama halen hatalı bir değerdir. Bu zihinsel deneyi sonsuza kadar ***ürdüğünüzde ilginç ortaya ilginç sonuçlar çıkar. Sahil şeridi Öklid geometrisine uygun olsa idi (örneğin çember) pergel küçüldükçe yapılacak ölçüm gerçekten de çemberin çevresine eşit olacaktı. Ama sahil şeridi Mandelbrot'un öngördüğü şekilde ise ölçek atom boyutlarına inene kadar bulunan uzunluk sürekli artmaya devam eder ancak atom ölçeğinde sonlu bir değere gidebilir. Dikkat edilirse Cantor Tozu'nda olduğu gibi burada da ölçü biriminden (bir anlamda gözlem boyutundan) bağımsız olarak hata halen mevcuttur.


    Mandelbrot'nun bir sonraki sorusu ise şu olmuştur: "Bir iplik yumağının boyutu nedir?" Uzaktan bakıldığında yumak bir noktadan ibarettir yani boyutu sıfırdır. Daha yakından yapılan gözlemlerde yumak yüzeyinde düzensizlikler bulunan bir küre gibidir. Boyut sayısı üçe çıkmıştır. Daha yakından bakıldığında yumağı oluşturan tek boyutlu iplik ayrık olarak gözlemlenebilir. Tek boyutlu ipliğe büyüteçle bakıldığında iplik üç boyutlu sütunlar gibi görülür. Mikroskop altında sütunlar tek boyutlu liflere lifler ise sonunda boyutsuz noktalara dönüşmektedir. O halde yumağın gerçek boyutu nedir?


    Mandelbrot bir birim cinsinden ölçülemez olan cisimlerin bir pütürlülük derecesine sahip olduğunu ve bu pütürlülük derecesini ölçmenin bir yolunu bulmuştur. Mandelbrot'ya göre göre ölçek değiştiğinde düzensizlik derecesi sabit kalmaktaydı. 1975 yılında Mandelbrot pütürlülük derecesinin ismini de koymuş oldu: Fraktal boyut. Pütürlülük özelliği gösteren cisimler de fraktallar adını aldı.

    Fraktal terimi taşıdığı felsefik anlam sayesinde ve fraktalların psychedelic biçimlere sahip olması gibi özelliklerinden dolayı diğer sanatları da etkilemiş ve özellikle müzik alanında sesin görsel yansıması fraktal şekillerin sese dönüşümü gibi alt başlıklar altında kendine yer bulmuştur.


    Konu Bilgileri       Kaynak: www.azeribalasi.com

          Konu: Fraktal -Fraktal nedir-Fraktal nerelerde kullanılır

          Kategori: Matematik

          Konuyu Baslatan: Dygsuz

          Cevaplar: 0

          Görüntüleme: 15634

    Konu Dygsuz tarafından (17.12.09 Saat 14:55 ) değiştirilmiştir.

  • Konuyu değerlendir: Bu konuyu beğendiniz mi?

    Fraktal -Fraktal nedir-Fraktal nerelerde kullanılır


    Değerlendirme: Toplam 0 oy almıştır, ortalama Değerlendirmesi puandır.

Ziyaretçilerin arayarak bu sayfada buldukları

fraktal geometrisi nerelerde kullanılır

fraktal günlük hayatta nerelerde kullanılır

fraktal günlük hayatımızda nerelerde kullanılır

fraktal doğada nerelerde bulunur

fraktal nedir nerelerde kullanılır

fraktallar nerelerde kullanılır

günlük hayatta fraktallar nerelerde kullanılır

fraktallar nedir nerelerde kullanılır
fraktal nerelerde kullanılır
fraktallar günlük hayatta nerelerde kullanılır
fraktal hayatımızda nerelerde kullanılır
fraktal ne demektir nerelerde kullanılır
fraktalın kullanıldığı yerler
fraktal gunluk hayatta nerelerde kullanilir
fraktal nerede kullanılır
fraktal kullanıldığı yerler
fraktal ve fraktal geometrisi nerelerde kullanılırfraktal ve fraktal geometrisi nerelerde kullanılır
fraktalın günlük hayatta kullanıldığı yerler
fraktalın günlük hayatımızdaki yeri
fraktallarin gunluk hayatta nerede kullanılır
fraktalların günlük hayattaki yeri
fraktalın kullanıldıgı yerlerfraktal geometrisi nedir nerelerde kullanılırfraktal nedir ve nerelerde kullanilirfraktalların günlük hayatta kullanıldığı yerlerfraktalların günlük hayatta kullanıldığı yerler
SEO Blog

Etiketler

Yetkileriniz

  • Konu Acma Yetkiniz Yok
  • Cevap Yazma Yetkiniz Yok
  • Eklenti Yükleme Yetkiniz Yok
  • Mesajinizi Degistirme Yetkiniz Yok
  •  
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216